Solució al vint-i-uné repte: Un desig impossible?

Us recorde l’enunciat del vint-i-uné repte:

Una cosa està clara:

Si desitgem pintar una superfície de dimensions infinites, no tindrem suficient pintura per cobrir-la.

Ara bé, si la superfície és finita i volem pintar-la amb una fina capa de pintura, no tindrem problema per a aconseguir la pintura i cobrir-la completament (imaginem una superfície rectangular amb unes dimensions finites, per exemple amb una mesura de 10 metres de base i 4 metres d’altura).

Però és completament segur que seria impossible cobrir una superfície infinita amb pintura?

Vaig a proposar-vos un exemple per si em podeu explicar el que ocorre:

Cubos

Inicialment tenim una habitació en forma de cub de costat 2 metres i per tant un volum de 8 metres cúbics. Si només volem pintar la cara superior, és a dir el sostre, haurem de pintar una superfície de 4 metres quadrats, cosa que realment no requerirà molta pintura.

Anem a modificar l’habitació procedint de la següent manera, farem que l’altura siga la meitat i que l’amplària es duplique, mantenint la longitud d’un costat. És a dir, hem transformat el cub en un ortoedre (com una caixa de sabates) amb unes dimensions de 2 metres, 4 metres i 1 metre. Com podem observar, el volum de la nova habitació es manté en 8 metres cúbics. Ara bé, si només volem pintar la cara superior necessitarem el doble de pintura que abans, ja que ara el nou sostre té 8 metres quadrats.

Si de nou tornem a fer la meitat de l’altura i dupliquem l’amplària ara l’ortoedre tindria unes dimensions de 2 metres, 8 metres i 0,5 metres. De nou el volum es mantindria en 8 metres cúbics però ara la cara superior tindria 16 metres quadrats, i per tant necessitaríem quatre vegades més pintura que en el cas inicial.

Podem continuar aquest procés indefinidament, de manera que arribarà un moment en què ni amb tota la pintura del món podríem cobrir la superfície superior, ja que es duplica indefinidament.

Ara bé, també podríem pensar en omplir l’ortoedre de pintura (amb 8 metres cúbics de pintura tindrem prou) i en eixe cas totes les cares quedarien pintades.

Potser d’aquesta manera el desig es fa possible, o seria només un somni poder aconseguir-ho?

Solució

El problema d’aquesta espècie de paradoxa és únicament la relació entre la realitat i un model matemàtic que intenta representar-la. En la realitat, pintar una superfície requereix un cert volum de pintura, ja que quan pintem una superfície ho fem amb una determinada capa de pintura de grossor major que 0, però en el model matemàtic podem pintar qualsevol superfície (inclús infinita) amb una quantitat de pintura nul·la.

En la realitat és probable que el desig no siga possible, però en el món de les Matemàtiques sí que ho és.

Deixa un comentari

Fill in your details below or click an icon to log in:

WordPress.com Logo

Esteu comentant fent servir el compte WordPress.com. Log Out / Canvia )

Twitter picture

Esteu comentant fent servir el compte Twitter. Log Out / Canvia )

Facebook photo

Esteu comentant fent servir el compte Facebook. Log Out / Canvia )

Google+ photo

Esteu comentant fent servir el compte Google+. Log Out / Canvia )

Connecting to %s